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Abstract 

A primary advantage of learning by observation is that it 
allows non-technical experts to transfer their skills to an 
agent. However, this requires a general-purpose learning 
agent that is not biased to any specific expert, domain, or 
behavior. Existing domain-independent learning by 
observation agents generalize a significant portion of 
learning but still require some human intervention, namely, 
modeling the agent’s inputs and outputs. We describe a 
preliminary evaluation of using convolutional neural 
networks to train a learning by observation agent without 
explicitly defining the input features. Our approach uses the 
agent’s raw visual inputs at two levels of granularity to 
automatically learn input features using limited training data. 
We describe an initial evaluation with scenarios drawn from 
a simulated soccer domain.  

1. Introduction  

Learning by observation (LbO) agents are trained to perform 

specific behaviors by observing an expert demonstrate the 

behaviors. Whereas traditional methods for training an agent 

may involve computer programming or knowledge 

modeling competency, LbO only requires the expert to be 

able to perform the behavior. By shifting the knowledge-

acquisition task from the expert to the agent itself, the agent 

is provided with the opportunity to learn from a variety of 

non-technical experts (e.g., healthcare professionals, 

military commanders). However, for an agent to learn an 

unknown behavior without any prior knowledge of the 

expert or domain, it should learn in a general, non-biased 

manner. 

 We describe our preliminary approach to overcome the 

limitations of existing general-purpose learning by 

observation agents. Specifically, we remove the need for 

input features to be manually modeled for each domain. 

Instead, we use deep learning (DL) techniques (LeCun, 
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Bengio, and Hinton 2015) to learn a feature representation 

from the agent’s raw visual inputs. Our approach trains two 

DL models: one uses the agent’s complete visual inputs (i.e., 

everything it can currently observe) while the other uses 

close-range visuals. The output of the two models are used 

to select actions to perform in response to novel visual input 

(i.e., what the agent can see as it attempts to replicate the 

expert’s behavior). 

 Our preliminary evaluation examines the feasibility of 

our approach under common learning by observation 

conditions. More specifically, these conditions include 

limited observations (i.e., due to limited expert availability), 

noisy or erroneous observations (e.g., errors by the expert or 

incorrect observations by the agent), and partial 

observability in the environment. We discuss related 

research in Section 2, followed by a description of our 

approach in Section 3. We evaluate our approach using 

scenarios defined in a simulated soccer domain in Section 4, 

and conclude with a discussion of future work in Section 5. 

2. Related Work 

Learning by observation has been used in a variety of 

domains, including poker (Rubin and Watson 2010), Tetris 

(Romdhane and Lamontagne 2008), first-person shooter 

games (Thurau, Bauckhage, and Sagerer 2003), helicopter 

control (Coates, Abbeel, and Ng 2008), robotic soccer 

(Grollman and Jenkins 2007), simulated soccer (Floyd, 

Esfandiari, and Lam 2008; Young and Hawes 2015), and 

real-time strategy games (Ontañón et al. 2007). However, 

most of these approaches were designed to learn in a single 

domain, so the agents cannot be directly transferred to new 

environments. Two domain-independent approaches for 

LbO have been proposed (Gómez-Martín et al. 2010; Floyd 

 



and Esfandiari 2011), both of which separate the agent’s 

learning and reasoning from how it interacts with the 

environment. This is advantageous because the observation, 

learning, and reasoning components are general-purpose 

and are not biased to any specific expert, behavior, or 

domain. However, they both require the inputs (i.e., what 

objects the agent can observe) and outputs (i.e., the actions 

the agent can perform) to be modeled. Although the 

modeling only needs to be performed once (i.e., before the 

agent is deployed in a new environment), it still requires 

some human intervention. Floyd, Bicakci, and Esfandiari 

(2012) use a robot architecture that allows sensors to be 

dynamically added or removed, with each change modifying 

how the LbO agent represents inputs. While this does not 

require human intervention before deployment in a new 

domain, it does require human intervention for each new 

type of sensor. Our approach differs in that it does not 

require any human intervention to model the environment; 

the only requirement is that the domain provides a visual 

representation of the environment. 

 Deep learning by observation is used for initial training 

of AlphaGo (Silver et al. 2016). However, their learning 

methodology has several limitations that may make it 

unsuitable for some LbO tasks. First, they trained their 

system with over 30 million observations. Large datasets 

may be available for established games like Go, but less 

popular games or novel behaviors may not have any existing 

observation logs. Second, such a large dataset requires 

months of training using datacenters composed of state-of-

the-art hardware. If models need to be trained rapidly with 

limited computational resources, alternative learning 

approaches are necessary. Finally, LbO is performed using 

images of a turn-based board game. This minimizes the 

influence of object occlusion (i.e., each Go piece is on its 

own square), observation error (e.g., due to erroneous or 

delayed responses by the expert), and provides the learning 

agent with full observability.  We instead examine the 

feasibility of using DL for LbO tasks with limited 

observations and limited training time in complex, real-time 

domains. 

 Our feature learning method is inspired by the deep 

reinforcement learning work of Mnih et al. (2015). They use 

raw visual inputs to learn to play a variety of Atari 2600 

games. A primary difference from our work, in addition to 

the amount of training time required to train their agents, is 

they use reinforcement learning rather than LbO. 

Reinforcement learning requires a reward function to be 

defined for each domain (e.g., based on the game score), 

thereby adding additional knowledge engineering before an 

agent can be deployed in a new environment. Deep 

reinforcement learning has also been used in simulated 

soccer (Hausknecht and Stone 2016), with the reward 

functions partially encoding the desired behavior (e.g., move 

to ball reward and kick to goal reward). Although 

reinforcement learning approaches are beneficial in that 

they do not require labeled training data, they require 

explicitly encoding reward functions which may bias the 

agents to learning specific behaviors. 

3. System Design 

In real-time computer games, agents typically receive 

sensory inputs in the form of periodic messages from the 

game. These messages can include information about the 

state of the game (e.g., elapsed time, score), the agent’s 

properties (e.g., player number, team name, resource levels), 

and observable objects. The observable objects are 

particularly important for an agent’s decision making 

because they provide information about the physical state of 

the environment. For example, in a soccer game the 

observable objects would include the location of the ball, 

other players, goal nets, and boundary markers.  While most 

games explicitly define the set of observable objects in the 

game (e.g., in a user manual), deploying an agent in a new 

game still requires some level of knowledge engineering to 

model these objects (i.e., converting the object definition 

into a format that is understandable by the agent). 

 To remove the need for modeling the observable objects, 

our approach uses the raw visual representation of the 

environment. For example, Figure 1 shows a player’s view 

of the field in a soccer game. The left side of Figure 1 shows 

the player’s entire field of vision, which we will refer to as 

the full visual representation, whereas the right side shows 

an enlarged view of the objects close to the player (i.e., a 

fixed-sized region surrounding the player), which we refer 

to as the zoomed visual representation. Both representations 

contain only a partial view of the environment (i.e., what is 

currently within the player’s field of vision, not the entire 

field), with the full representation giving a larger view of the 

field than the zoomed representation. The agent is not 

explicitly given information about what is contained in the 

images (e.g., it does not know that the white circle is the 

soccer ball). Each of the visual representations is stored as a 

256 × 256 RGB image. 

Figure 1: The full visual representation (left) and zoomed visual 

representation (right) in a simulated soccer game 



 During observation, the learning agent records the 

expert’s current visual inputs, both the full version 𝑉𝑓𝑢𝑙𝑙  and 

zoomed version 𝑉𝑧𝑜𝑜𝑚𝑒𝑑, as well as the action 𝐴 performed 

by the expert. Each input-action pair is stored in the 

corresponding observation set, 𝒪𝑓𝑢𝑙𝑙  or 𝒪𝑧𝑜𝑜𝑚𝑒𝑑  (𝒪𝑓𝑢𝑙𝑙 ←
𝒪𝑓𝑢𝑙𝑙 ∪ 〈𝑉𝑓𝑢𝑙𝑙 , 𝐴〉 and 𝒪𝑧𝑜𝑜𝑚𝑒𝑑 ← 𝒪𝑧𝑜𝑜𝑚𝑒𝑑 ∪ 〈𝑉𝑧𝑜𝑜𝑚𝑒𝑑 , 𝐴〉).  
 Learning is performed using two convolutional neural 

networks (CNN) (Krizhevsky, Sutskever, and Hinton 2012), 

with one trained on the full observations (i.e., 𝒪𝑓𝑢𝑙𝑙) and a 

second trained on the zoomed observations (i.e., 𝒪𝑧𝑜𝑜𝑚𝑒𝑑). 

These models represent the environment at two levels of 

granularity and are used in combination to overcome limited 

training data. For example, a nearby ball would be easier to 

detect in the zoomed image because objects appear larger, 

whereas the full image would be necessary to detect a goal 

net on the other side of the field. 

 We use a modification of the CaffeNet architecture (Jia et 

al. 2014): an input layer, five convolution layers, five 

pooling layers, two fully connected layers, and one softmax 

loss layer. The network takes as input the pixel values using 

all three color channels (i.e., red, green, and blue), resulting 

in 256 × 256 × 3 inputs. The outputs of the network 

represent the confidence in each of the possible actions (i.e., 

the confidence that each action should be selected in 

response to the input image). In the soccer example, three 

actions1 are used: kick, dash (i.e., move), and turn.  

Rather than training the entire network, our approach uses 

several layers that are pretrained on other data sources. The 

convolution and pooling layers are extracted from an 

existing network trained on ImageNet data (Jia et al. 2014), 

whereas the fully connected layers and softmax loss layer 

are trained using observation data. This approach has two 

primary advantages. First, the pretrained ImageNet layers 

can identify many visual features already (e.g., lines, curves, 

shapes, objects). This removes the need to relearn these 

common features. Second, the limited number of 

observations makes it impractical to train the entire network. 

Instead, the network learns how to use existing features to 

classify the observation data. Although some layers are 

pretrained, they do not bias the learning to any particular 

domain or task since the ImageNet dataset contains millions 

of images across a variety of topics (i.e., they are not soccer-

specific images). During learning, both the full and zoomed 

models use an identical architecture but are trained 

independently. 

 During deployment, the learning agent attempts to 

replicate the expert’s behavior and uses its own visual input 

as input to the CNNs. For each input the agent receives, the 

CNNs output six confidence outputs (i.e., both networks 

output confidence values for all three actions). The 
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maximum of the six confidence values is selected and its 

associated action is used by the agent (i.e., the agent 

performs the action in the environment). By using this 

combined approach, the agent leverages the strengths of 

each individual model during action selection. For example, 

we would expect the zoomed model to perform better when 

important objects are near the agent, whereas the full model 

should perform better when information from the entire field 

of vision is necessary. The primary goal of deployment is 

for the agent to select similar actions to the expert when 

presented with similar sensory inputs.  

4. Evaluation 

To evaluate the performance of our DL LbO system we 

collected data from the RoboCup Simulation League 

(RoboCup 2016). The matches were 5 vs 5 soccer games 

with each player controlled by a scripted AI agent. The 

specific agent used, Krislet, performs simple soccer 

behaviors that involve locating the ball, running towards the 

ball, and kicking the ball towards the opponent’s goal. In 

each match, a single player was used as the expert (i.e., its 

inputs and actions were recorded). The learning agent 

observed 10 full soccer matches, with each game being 10 

minutes in length. In total, this resulted in approximately 

40,000 observations for both the full and zoomed 

observation sets. However, the dataset is highly imbalanced 

(73% dash, 26% turn, 1% kick), so a balanced training set 

was created such that each action was equally represented 

(1617 total observations in each observation set). A 

balanced test set of 1029 observations was created by 

observing additional soccer matches.  

 The CNNs were trained using a base learning rate of 0.01, 

polynomial rate decay with a power of 3, and 13,000 

training iterations. Table 1 shows the F1 score (i.e., harmonic 

mean of precision and recall, with 1.0 being the maximum 

possible performance) when the test set was used to evaluate 

the trained models. In addition to our combined approach, 

we also evaluated performance when only the full or 

zoomed model was used for action prediction.  

Table 1: Results of trained CNNs on RoboCup test data 

Model F1 Kick F1 Dash F1 Turn F1 Overall 

Full 0.84 0.56 0.59 0.67 

Zoomed 0.93 0.57 0.57 0.69 

Combined 0.92 0.61 0.61 0.71 

  

 These results, while preliminary, show that the agent can 

learn a suitable model for action selection. While both the 



full and zoomed models perform reasonably well, the best 

performance was achieved when the Combined model was 

used. This demonstrates that using multiple representations 

of the visual data is preferable since these models have 

varying strengths and weaknesses. 

5. Conclusions and Future Work 

We described a preliminary study of how well a learning by 

observation agent can learn without explicitly modeling the 

objects it observes. Our approach uses an expert’s raw visual 

inputs at two levels of granularity to train a pair of CNNs. 

In our study, the agent reproduced the expert’s action 

selection decisions reasonably well in tasks drawn from a 

simulated soccer domain. This indicates that even with 

limited training observations, noisy observations, and partial 

observability, it is possible to create an agent that can learn 

an expert’s behavior without being provided an explicit 

object model. 

 Although our approach removes the need to model 

observable objects, it still requires modeling the possible 

actions. An area of future work will be to identify methods 

for learning the actions an expert performs based on 

observations. Additionally, we have only examined a single 

two-model architecture (i.e., selecting the most confident 

prediction from two CNNs). In future work we will examine 

if added benefit can be achieved by training additional 

models (e.g., other levels of granularity) or by modifying 

how the model outputs are combined (e.g., inducing a 

decision tree from their output). Our preliminary evaluation 

has only measured the performance from a single 

experiment from a single expert in a single domain. We plan 

to perform a more thorough evaluation of the learning 

performance involving numerous experimental trails. This 

will not only allow us to show the benefit of our approach, 

but it will also allow for a thorough comparison with other 

LbO agents that learn in RoboCup (Floyd, Esfandiari, and 

Lam 2008; Young and Hawes 2015). To determine whether 

our approach is truly domain-independent, we plan to 

conduct additional studies with different experts in different 

environments. Finally, we plan to examine how this 

approach can be extended to learn from state-based experts 

since the RoboCup expert we examined is purely reactive 

(i.e., the expert’s action is based entirely on its current visual 

inputs). 
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